

TOWN OF ANNETTA – LEARNERS WATER PLANT Annual Drinking Water Quality Report

2023 Consumer Confidence Report PWS #1840206

2023 Consumer Confidence Report for Public Water System TOWN OF ANNETTA LEARNERS WATER PLANT

This is your water quality report for January 1 to Decembe r 31, 2023

TOWN OF ANNETTA LEARNERS WATER PLANT provides ground water from Trinity Aquifer located in Town of Annetta, Texas.

For more information regarding this report contact:

Name Roger Crutcher

Phone (817) 441-5770

Este reporte incluye información importante sobre el agua para tomar. Par a asistencia en español, favor de llamar al telefono (817) 441-5770.

Definitions and Abbreviations

Definitions and Abbreviations	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water sy

Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
------	--

Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible)
	why total coliform hacteria have been

Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine
	(if possible) why an F. coli MCL violatiophas occurred and/or why total coliform hacteria have been found in our
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feas

ible asing the best available treatment

Maximum Contaminant Level Goal or MCL The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs all

Maximum residual disinfectant level o The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a d

Maximum residual disinfectant level g The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not needed the benefits of the use of

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)

ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occur ring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, a gricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, a nd residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industri al processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining act ivities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HI V/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control thevariety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushingyour tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

No Source Water Assessment for your drinking water source(s) has been conducted by the TCEQ for your water system. The report describes the susceptibility and the types of constituents that may comeinto contact with your drinking water source based on human activities and natural conditions. The information in this assessment allows us to focus our source water protection strategies.

Lead and Copper	Date Sampled	MCLG	Action Level (90th Percent ile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	12/11/2022	1.3	1.3	0.467	0	ppm	N	Erosion of natural deposits; Leach ing from wood preservatives; Corrosion of h

2023 Water Quality Test Results

Disinfection By-Products	Collection Dat e	Detected	Individual Sampl	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA 5)	2023	4	4.1 - 4.4	No goal for the	60	ppb	N	By-product of drinking water disinfe ction.

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes	2023	26	23.3 - 25.6	No goal for t	80	ppb	N	By-product of drinking water disinfe
(MHTT)				he				ction.
				total			{	

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminant	Collection Dat		Range of Individual Sampl	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	10/13/2021	0.036	0.036 - 0.036	2	2	ppm	N	Discharge of drilling wastes; Discharge from
Fluoride	10/13/2021	0.584	0.584 - 0.584	4	4.0	mqq	N	Erosion of natural deposits; Water a dditive which promotes strong teeth; Discharge from fertilizer and alumi
Nitrate Emeasured as Nitrogen]	2023	0.277	0.277 - 0.277	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residu	Year	Average Level	Range of Level		MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine	2023	1.19	0.21-4.0	4	4	mqq		Water additive used to control mic robes.